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1. Spherical and cylindrical detonation waves, converging respectively to a point or 

to the axis of symmetry, are investigated. The usual assumptions are made : 
1) the detonation wave is strong, i. e. the values of the pressure and internal energy 

in the undisturbed fluid can be neglected in comparison with their values in the disturbed 

gas : 
2) during the passage of the shock wave through the medium there is instantaneously 

released an energy 6? , in ?7J2/sec2 (the magnitude of 8 refers to unit mass) : 
3) the process in the disturbed fluid is polytropic with exponent y . 

From the conditions for the conservation of mass, momentum, and energy at the deto- 
nation wave jJ and 21 we have 

(1.2) 

The equations for the one-dimensional motion of a gas have the form, in Eulerian 

variables, aU 

Pat +pv ~++J, g+FJ $+ 
aP vx+y=o (1.3) 

$$+ 
aP v a,+rp g+yT.=o 

Here w = 0 for the plane case, V = 1 for the cylindrical one, and v = 2 for spherical 
symmetry. 

2, We investigate the case when the spherical or cylindrical detonation front con- 
verges from infinity according to the rule 
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P2 == a, (--1)” (2.1) 

The motion is defined by the parameters C&, , p , r , 8, y and u. From dimensional 

analysis [3] it follows that in this case the motion will be self-similar with a single 
dimensionless independent variable 

h = r/r2 ft) (“.‘) 

As dimensionless functions we take the ratios of the unknown functions U _ p t p to 
their values at the detonation front 

From the conditions (1. I), (1.2) at the detonation front, 

- q = a& (-t)n-‘, Pz = PJ(l - PII ps = pt n,* Sn~(-t)2(~-1j (2.5) 

We will further assume that ,6 = const in the convergence process. This condition 

will be examined below. Converting Equations (1.3) to the dimensionless variables in 

(2.2) and (2,3), we get a system of three ordinary differential equations 

6 w’ (h + #5@) + (3 - b) X’ - 6 0 (n - 1)/n = 0 

6’ (h ‘i &it) -j- &%J’ + YbSO/l = 0 (2.6) 
n’ (X -+ ~CO) + &Uc6J’ - ,zrr (n -. 1)/n -j- Y&atO/3, = 0 

with boundary conditions 

(D (1) = -1, 6 (1) = 1, Jr(l) = 1 (2.7) 

How we can determine 72, will be examined in Section 4. 

3, When the detonation front converges from infinity, the motion is defined by the 

parametersq, PI. 7, 6, y and v, 
For dimensional considerations the detonation front must travel with a constant velo- 

city T& = aI( i, e. in Equation (2.1) it is necessary to put n = 1 , where C&l- /& , 

It is obvious that 0 = const for this case. Equations (2.6) are written in the form 

(for n = 1) ho’ (h + fh) + (1 - p, n’ = 0 
6’ (h + BwJ + B6w’ f %$hIh = 0 (3.1) 

n’ (h -f- Bo) + By”w’f vgynolh = 0 
The bOundary conditions will be 

0 ft) = --1, s (1) = 1, 3X (1) = 1 (3.2) 
It Is Obvious that 

n= 6y (33) 

will be the integral of system (3.1) (analogous to the isentropic integral). 
Substituting (3.3) into (3.1). we get a system of equations relating 6 and W 

s (h +- PO) CD’ + y (1 - fi)S’--” 6’ = 0 (3.4) 
Bso’ -+ (h + &I) 6’ + vbGo!h = 0 

Solving the system (3.4) for 6’ and WI, we have 
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6” -!? d6 h + PO 
do =- T Cl- P) (3.6) 

The following can be said about the field of the integral curves of Equations (3.5) 

(Fig. 1): 
1) The lines i = 0 and W = 0 are integral curves; 

2) Along the line h + @J = 0 we have 

(3.7) 

3) Along the line W = 0 we have 

d8 -- 
dh --* &=&(l=collst (3.8) 

It is easily seen, considering (3.6) and the 

boundary conditions (3.2), that 

+I 

‘1 

1 -x 
60 

,_r=2-m+u 
(3.9) 

-A* 
2T (i- PI 

‘1.. 
On the line W = 0 we have a singular point 

with coordinate 
-1.7 h,’ = vb (1 - fi)&)? 

Fig. 1 
Considering (1.2) and (3, 9) , 

a(2-aa) 
h*a = 2 (r + 1) (3.10) 

Hence it is evident that, even for arbitrary choice of a (giving up the Chapman-Jou- 
guet condition), it is impossible for the singular point to have the coordinate A, > 1 . 

It is evident from the field of the integral curves (Fig. 1) that there is no integral curve 
going from the point k = 1 , W = - 1 , 6 = 1 to infinity along i (a jump like BK gives 
an expansion shock, and introducing such an additional jump in order to obtain a solution 

is not permissible. 

Thus, it is concluded that a self-similar solution does not exist for the case of detona- 
tion waves converging with a constant velocity (the isentropic case), even if the Chapman- 
Jouguet condition is given up. 

This result was obtained by Landau and Staniukovich for the Chapman-Jouguet condi- 
tion [4]. 

However, for divergent detonation waves with constant velocity, the solution exists 
(the curve L#), as was first discovered by Ia. B. Zel’dovich (1 and 23. 

4. Dimensional analysis does not help in determining the law for the converging 
detonation front. We return to Equation (1.2), in which U = 2 corresponds satisfactorily 
to a shock wave without the release of energy (8 = 0) ; Cr. = 1 corresponds to the Chap- 
man-Jouguet detonation regime, where the wave travels along characteristics in the dis- 
turbed gas. 

In those cases when Da>> g (the internal energy of the matter in the detonation front 
is much g,reater than the released chemical energy, which corresponds to the sufficiently 
accelerating detonation wave), we can assume a = 2 and use the self-similar solution of 
Guderley-Landau-Staniukovich [4]. 

We investigate the other extreme case (which is physically unreal), where CX= 1 in the 
convergence process, which insures the Chapman-Jouguet condition and the detonation 
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wave travels along the characteristic, Jt is necessary for this that the energy yielded by 
the front & be Froportional to o2 for fi and r2 ) ) i, e. cl! must increase as the detona- 

tion front accelerates, (The internal energy of the matter in the detonation front is of 
the same order as the released chemical energy 8 .) 

While Q is not taken into account when using the Guderley-Landau-Staniukovich solu- 
tion, its influence is now overestimated. 

In this way we will seek the law for the convergence of the front as a characteristic 

dividing the disturbed and undisturbed media. 

We use the equations of steady, one-dimensional motion in Lagrangian variables 
&U aP P (1 + UJ 

pl~-=--T&-, [‘]E ~ 
P 

I-/-u/r ’ 
--1 
Pa t;jy (4.1) I 

Here U is the displacement of a particle. The conditions on the detonation wave in 

the Chapman-Jouguet regime are 

D 

2‘2=-f-n* 
PI (Y + 1) 

1)2 =‘; 
PlU2 

Y ’ P2 = r-i_1 

We put the first equation in (4.1) in the torm 

8% CPU 
‘;il:! = CL2 (r, 1L, Ur) jjjz + b (r, u, up) 

(4.2) 

(4.3) 

Then the equations for the characteristics and the conditions on them are 

From the third equation in (4. l), using the second equation and the relations (4.2), we 
obtain p= _-!- ( j A- 

D? 

Y-i-1. r+l 
y pl 

(1+ U,)‘(l + u/P)yY 

Differentiating (4” 5) and substituting into the first equation in (4.1) we get 

Equating (4.6) and (4‘ 3) we obtain 

T 
i\ j 

Y -t1 D”- 
cP(r, u, UT)= _ r -I- 1 (If ur)~‘l(l + u/r)yy 

(4.5) 

(4.6) 

(4.7) 

It was assumed above that the detonation wave travels along a characteristic, there- 

fore 
aa (r) = a tr, 0, ur2 (r)l = D (r) 

Considering (4.7), we determine from this 
(4.9) 

From (4,8> and (4.10) we get 

b,(r) = b [r, 0, y2] = - 
D” 2 dD 

(4.11) 

For the characteristic which bounds the the quiescent gas we have 

u&t + u&r = du = 0, or l”& f U$lP? = 0 (4.12) 
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Substituting (4.12) into (4.4) and using (4.10) we have 

f ur2da2 = b,dt (4.13) 

Considering (4. 9) to (4.11) and (4.4). we obtain that along the sought- for character- 
istic 

3d++-$$$=o (4.14) 

Integrating this equation and noting that the velocity, being directed toward the center. 
is taken as negative, we get 

lw=r$i ( 12 = * ) ) 
dr., A 

or _L 
dt =p 

Integrating the last equation with the condition that r, = 0 at t = 0 , we have 

(4.15) 

Thus the law for the converging detonation front is obtained in the form which was 

looked for in Section 2, and furthermore the rela- 
tion between the similarity exponent n , and y and 

V is determined. 

6, Having determined n ( y , v) , we can solve 
the system (2,6) numerically with the boundary 

conditions (2.7). However, it is first necessary to 
examine the character of the point x = 1 , W = - 1. 
‘TT = 1 , 6 = 1 which is the singular point, because 
the boundary conditions on the detonation wave are 
specified along the characteristic. 

As an example, one of the possible solutions is 
shown in Fig. 2, which was obtained under the con- 
dition 

dhf do = 0 ror h = 1 (E = i/h) (5.1) 

Modification of condition (5.1) effects the inte- 

gral curves very little, therefore the nature of the 

singular point was not considered in the present 

paper. 

6 , We compare the law obtained for the con- 
verging detonation front (for brevity it will be 

called “the solution with 8 I’). when 8 is taken too 
large in the process of the acceleration (CX = 1) , 
and the convergence law in the Guderley-Landau- 

Staniukovich solution, where & is not considered at all, i. e. the solution is strictly valid 

only for Q= 0 (U= 2). In reality the value of CI changes during the process of conver- 
gence and 1 5 a 5. 2 , From this point of view the results of Section 5 (the distribution 
of U , p , P behind the front) can be compared with the solution of Guderley-Landau- 
S taniukovich. 

The similarity exponent rl for the solution with II and for the Guderley-Landau-Sta- 
niukovich solution in the case of cylindrical symmetry (v= 1) for y = 1.4 is 0.838 
according to (4.15) and 0.834 according to [4]. and for y = 3 is respectively 0.800 



176 R. I. Nigmatulln 

and 0. 810. Similarly, in the case of spherical symmetry (v= 2) for y = 1.4 , n is 
0.720 and 0.717 and for y = 3 it is respectively 0.667 and 0.638. 

From this data it is evident that the difference between the similarity exponents (con- 

Fig. 3 

vergence rules) in the Guderley-Landau-Staniukovich 
solution and the obtained solution with Q (for the 
region in which there occurs a real mean convergence 

rule), is sufficiently small (especially for the case of 
cylindrical symmetry, V = 1). Thus, even if the re- 
leased chemical energy increases toward the center 

according to the rule 1/7”,$” this little affects the 
convergence rule. When 4 is constant at the front its 
effect on the value of n in the convergence rule 
7, = a,( - t)‘, is even less. 

The strongest effect on the convergence rule for the 

detonation front is due to the geometry (v) , a smaller 
effect is due to the fluid exponent y, and the effect of 

the chemical energy released in the wave front is weak; 
Q determines the value of V, p, p in the detonation 

front (1.1) and (2.1). 
From the foregoing it seems possible to use the fol- 

lowing approach to the non-self-similar problem of the 

converging detonation front, started at certain initial radius H , and which has initiated 
its own motion at the Chapman-Jouguet velocity 

Da0 = 2 (Y - i) (Y + i) Qo (6.1) 

Taking for the exponent rl or m a value from (4.15) for the corresponding y and V 
(self-similarity was not used in Section 4), we have the following relations for the motion 

of the front : n Km 
i ) 

vr --= --- 
110 r.2 ’ ‘n. = 31 

(6.2) 

Substituting the last expression into (1.2) and using (1. l), we obtain successively 

V2 Rrn ( ) P2 R 2m PZ 7 
-_=a x ’ ---- - CY -- -- 
V20 ( J pm - r2 ’ Pzo - r - (a - i) (6.3) 
__ 

Here Uzo, pzo, Pa0 are the values corresponding to the values in the Chapman- 

Jouguet detonation regime for the specified Qo. The results for y = 3, v = 1 are shown 

in Fig, 3. 
The author thanks H. A. Rakhmatulin for guidance and valuable counsel, and also 

K. I, Kozorezov, B. V. Kuksenko, N. A. Talitskikh, K. P, Staniukovich and Ia. M. Kazh- 
dan for helpful discussion. 

BIBLIOGKAPHY 

1. Landau, L. D. a n d . . L 1 f s h 1 t z , E . M, , Mekhanika sploshnykh sred (Mechanics 
of Continuous Media) . Gostekhizdat, 1954 . 

2. Emmons, H., Ed., Fundamentals of Gas Dynamics (High Speed Aerodynamics 

and Jet Propulsion, Vol. III) . Princeton Univ. Press, 1958. 



Converging cylindrical and spherical detonation waves 177 

3. Sedov, L. I., Metody podobiia i razmemostei v mekhanike (Similarity and 
Dimensional Methods in Mechanics). M., “Nat&a”. 1965 . 

4. Staniukovich, K. P., Neustanovivshiesia dvizheniia sploshnoi sredy(Unsteady 

Motion of Continuous Media), M. , Gostekhizdat, 1955 . 

Editorial Note : 
English translations of references 1, 3 and 4 are available : 

1. Fluid Mechanics, Addison- Wesley Pub. Co, , 1959. 

3. Academic Press, N.Y. , 1959. 

4. Pergamon Press, N. Y. , 1960. 
Translated by I. T. 

SOLUTION OF HELMHOLTZ' EQUATION FOR A HALF-PLANE 

WITH BOUNDARY CONDITIONS CONTAINING 

HXGH ORDER DERIVATIVES 

(0 RESHENII URAVNENIIA GEL’MGOL’TSA DLIA POLUPLOSKOSTI 
PRI GRANICHNYKH USLOVIIAKH, SODERZHASHCHIKH 

PROIZVODNYE VYSOKOGO PORIADKA) 
PMM Vol.31, No.1, 1967, pp. 164-170 

D. P. KOUZOV 
(Leningrad) 

(Received March 10, 1966) 

The problem of the steady-state acoustic oscillation is examined in a fluid the surface 
of which is covered by an infinitely thin elastic body (a membrane, a plate, a shell) . 
Properties cf the cover are given by means of a differential operator of arbitrary order 
with constant coefficients. A solution of the problem is formulated for arbitrary sources 
(point or distributed) which are located both in the fluid and on the cover. 

Notation 

P- pressure, j’ - extraneous body force in the fluid, F - extraneous surface force, 

P- density of fluid, PO - density of covering material, p - surface density of cover- 
age, &’ - Young’s modulus, U - Poisson’s modulus, y- membrane tension, ‘2h- 

thickness of coverage, Lu - circular frequency, k - wave number in the fluid, 
The time factor .seiot is omitted everywhere . 

1, Formulation of the problem. Exrmplrc. Problem related to the 

influence of thin elastic objects (membranes, plates, shells) on acoustic processes in a 
fluid are at present of urgent interest. Mathematical boundary value problems which 
arise in the investigation of such effects as a rule have a specific feature : differential 
operators which are involved in the definition of boundary conditions have a higher order 
than the order of the equation itself. 

Let the lower half-plane y > 0 be filled with a compressible fluid. Processes in this 
fluid will be described in terms of pressure P. For y> 0 we shall assume that the 


